Module: claude_llm
Expand source code
# Copyright (C) 2023-present The Project Contributors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import ClassVar
from anthropic import Anthropic
from cl.convince.llms.llm import Llm
from cl.convince.settings.anthropic_settings import AnthropicSettings
@dataclass(slots=True, kw_only=True)
class ClaudeLlm(Llm):
"""Implements Claude LLM API."""
model_name: str | None = None
"""Model name in Anthropic format including version if any, defaults to 'llm_id'."""
max_tokens: int = 4096
"""Maximum number of tokens the model will generate in response to the query."""
_client: ClassVar[Anthropic] = None
"""Anthropic client instance."""
def uncached_completion(self, request_id: str, query: str) -> str:
"""Perform completion without CompletionCache lookup, call completion instead."""
# Prefix a unique RequestID to the model for audit log purposes and
# to stop model provider from caching the results
query_with_request_id = f"RequestID: {request_id}nn{query}"
model_name = self.model_name if self.model_name is not None else self.llm_id
messages = [{"role": "user", "content": query_with_request_id}]
client = self._get_client()
response = client.messages.create(
model=model_name,
messages=messages,
max_tokens=self.max_tokens,
)
if len(response.content) != 1:
raise RuntimeError(f"More than one response message received for query: {query}: {str(response)}")
result = response.content[0].text
return result
@classmethod
def _get_client(cls) -> Anthropic:
"""Instantiate and cache the Anthropic client instance."""
if cls._client is None:
cls._client = Anthropic(
api_key=AnthropicSettings.instance().api_key,
)
return cls._client
Classes
class ClaudeLlm (*, llm_id: str = None, model_name: str | None = None, max_tokens: int = 4096)
-
Implements Claude LLM API.
Expand source code
@dataclass(slots=True, kw_only=True) class ClaudeLlm(Llm): """Implements Claude LLM API.""" model_name: str | None = None """Model name in Anthropic format including version if any, defaults to 'llm_id'.""" max_tokens: int = 4096 """Maximum number of tokens the model will generate in response to the query.""" _client: ClassVar[Anthropic] = None """Anthropic client instance.""" def uncached_completion(self, request_id: str, query: str) -> str: """Perform completion without CompletionCache lookup, call completion instead.""" # Prefix a unique RequestID to the model for audit log purposes and # to stop model provider from caching the results query_with_request_id = f"RequestID: {request_id}nn{query}" model_name = self.model_name if self.model_name is not None else self.llm_id messages = [{"role": "user", "content": query_with_request_id}] client = self._get_client() response = client.messages.create( model=model_name, messages=messages, max_tokens=self.max_tokens, ) if len(response.content) != 1: raise RuntimeError(f"More than one response message received for query: {query}: {str(response)}") result = response.content[0].text return result @classmethod def _get_client(cls) -> Anthropic: """Instantiate and cache the Anthropic client instance.""" if cls._client is None: cls._client = Anthropic( api_key=AnthropicSettings.instance().api_key, ) return cls._client
Ancestors
- Llm
- LlmKey
- KeyMixin
- RecordMixin
- abc.ABC
- typing.Generic
Static methods
def get_key_type() -> Type
-
Inherited from:
Llm
.get_key_type
Return key type even when called from a record.
Fields
var llm_id -> str
-
Unique LLM identifier.
var max_tokens -> int
-
Maximum number of tokens the model will generate in response to the query.
var model_name -> str | None
-
Model name in Anthropic format including version if any, defaults to ‘llm_id’.
Methods
def completion(self, query: str, *, trial_id: str | int | None = None) -> str
-
Inherited from:
Llm
.completion
Text-in, text-out single query completion without model-specific tags (uses response caching).
def get_key(self) -> LlmKey
-
Return a new key object whose fields populated from self, do not return self.
def init_all(self) -> None
-
Invoke ‘init’ for each class in the order from base to derived, then validate against schema.
def uncached_completion(self, request_id: str, query: str) -> str
-
Inherited from:
Llm
.uncached_completion
Perform completion without CompletionCache lookup, call completion instead.